Stable Marriage with General Preferences
نویسندگان
چکیده
منابع مشابه
Stable Marriage with Multi-Modal Preferences
We introduce a generalized version of the famous STABLE MARRIAGE problem, now based on multimodal preference lists. The central twist herein is to allow each agent to rank its potentially matching counterparts based on more than one “evaluation mode” (e.g., more than one criterion); thus, each agent is equipped with multiple preference lists, each ranking the counterparts in a possibly differen...
متن کاملStable marriage problems with quantitative preferences
The stable marriage problem is a well-known problem of matching men to women so that no man and woman, who are not married to each other, both prefer each other. Such a problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or more generally to any two-sided market. In the classical stable marriage problem, both...
متن کاملLocally Stable Marriage with Strict Preferences
We study stable matching problems with locality of information and control. In our model, each agent is a node in a fixed network and strives to be matched to another agent. An agent has a complete preference list over all other agents it can be matched with. Agents can match arbitrarily, and they learn about possible partners dynamically based on their current neighborhood. We consider converg...
متن کاملMarriage Matching with Correlated Preferences
Authors of experimental, empirical, theoretical and computational studies of two-sided matching markets have recognized the importance of correlated preferences. We develop a general method for the study of the effect of correlation of preferences on the outcomes generated by two-sided matching mechanisms. We then illustrate our method by using it to quantify the effect of correlation of prefer...
متن کاملThe stable marriage problem with restricted pairs
A stable matching is a complete matching of men and women such that no man and woman who are not partners both prefer each other to their actual partners under the matching. In an instance of the STABLE MARRIAGE problem, each of the n men and n women ranks the members of the opposite sex in order of preference. It is well known that at least one stable matching exists for every STABLE MARRIAGE ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theory of Computing Systems
سال: 2016
ISSN: 1432-4350,1433-0490
DOI: 10.1007/s00224-016-9687-z